The Impact of Stock Option Trading Volume on Stock Market Price in an Islamic Capital Market: A Case Study of the Automotive Industry

Document Type : Science - Research (Islamic Risk Management Tools)

Authors

1 Associate Professor, Department of Economics, Faculty of Economics, Management and Administrative Sciences, Semnan University, Semnan, Iran

2 Associate Professor, Department of Accounting, Faculty of Economics, Management and Administrative Sciences, Semnan University, Semnan, Iran

3 .A. Canditate Accounting, Department of Accounting, Faculty of Economics, Management and Administrative Affairs, Semnan University, Semnan, Iran

4 M.A. Canditate Accounting, Department of Accounting, Faculty of Economics, Management and Administrative Affairs, Semnan University, Semnan, Iran

10.30497/ifr.2025.246806.1905

Abstract

1. Introduction and Objective
Options contracts, as one of the most widely used derivative instruments in modern financial markets, have traditionally been viewed primarily as risk management tools. They are designed to hedge against adverse price fluctuations and to mitigate volatility in the spot market. In this conventional perspective, derivatives are meant to stabilize financial systems and enhance market efficiency by allowing investors and institutions to transfer or redistribute risk. Yet, research in both developed and emerging markets increasingly demonstrates that the trading of derivatives, far from being neutral, can actively influence the pricing of the underlying assets. This dual function of derivatives—simultaneously reducing risk and transmitting information—has become a focal point of financial economics.
      The case of stock options is particularly notable. These instruments, while structured to provide investors with flexibility in exposure to underlying assets, can exert feedback effects on stock prices themselves. The mechanisms through which such impacts emerge include the information content embedded in option trading, the behavioral reactions of market participants, and liquidity spillovers from derivative markets into the spot market. For instance, heavy trading in stock options may be interpreted as a signal of changing expectations, thereby prompting adjustments in stock valuations even before fundamentals shift.
      In the context of Islamic capital markets, such as Iran’s, the analysis acquires additional layers of importance. Given the emphasis on transparency, the prohibition of excessive uncertainty (gharar), and the need to prevent speculative manipulation (maysir), understanding how derivative markets interact with stock markets is not merely a technical issue but also a normative concern. Derivatives in Iran have developed only recently, with limited depth and a relatively small number of tradable contracts compared to international standards. Yet, their influence on stock markets, particularly in key sectors like the automotive industry, appears to be significant.
      The central objective of this study, therefore, is to empirically examine the effect of stock option trading volume on the stock prices of automotive companies listed on the Tehran Stock Exchange (TSE). The research seeks to determine whether option trading volume operates as a meaningful signal that shapes investor expectations and stock price dynamics in a shallow but growing derivative market. This focus combines empirical analysis with policy relevance, offering insights for investors, regulators, and scholars of Islamic finance alike.
2. Methods and Materials
The research population consists of automotive companies listed on the Tehran Stock Exchange whose shares, as well as their corresponding stock options, are actively traded. This sector was selected because it is both a major component of Iran’s stock market and one of the earliest to adopt derivative instruments. The presence of simultaneous activity in both the spot and options markets makes it an ideal case study for exploring cross-market dynamics.
      The dataset spans multiple trading periods and incorporates daily observations of stock prices and option trading volumes. In order to handle the characteristics of the data—specifically its time-series and panel structure—the Panel Autoregressive Distributed Lag (Panel ARDL) model was employed. This methodology is particularly suitable for datasets where variables may exhibit mixed levels of integration (I(0) and I(1)) and where both short-term and long-term relationships need to be captured. By using Panel ARDL, the study is able to assess not only the immediate impact of option trading volume on stock prices but also the persistent, long-term effects that may materialize over time.
      The variables of the study are defined as follows:
- Dependent variable: Stock prices of automotive companies.
- Independent variable: Trading volume of stock options linked to these companies.
- Control considerations: Structural features of the TSE, liquidity constraints, and statistical diagnostics to confirm the appropriateness of the ARDL framework.
      In addition, robustness checks were performed to ensure that results were not driven by spurious correlations or by the shallow nature of the derivative market. The use of panel data strengthens the empirical results by pooling information across multiple firms, thereby increasing statistical power and reducing the risk of bias due to firm-specific anomalies.
3. Research Findings
The empirical findings reveal a positive and statistically significant relationship between option trading volume and stock prices in the automotive sector of the Tehran Stock Exchange. More specifically, as the trading activity in stock options increases, the underlying stock prices show a corresponding upward movement. This relationship holds in both the short-term fluctuations captured by the ARDL lags and in the long-term equilibrium dynamics implied by the model.
       Two central insights emerge from the analysis:
1. Market Sensitivity to Derivatives: The spot market in Tehran is responsive to developments in the derivatives market, even though the latter is shallow and relatively new. Option trading activity carries informational value that market participants interpret as signals about future price trajectories.
2. Signaling Function of Trading Volume: The trading volume of stock options effectively operates as a predictor of stock price behavior. Investors observing heightened option activity tend to become more optimistic, anticipating rising prices in the underlying assets. This behavioral channel amplifies the impact of derivative markets on stock valuations.
      The magnitude of the effect, while varying across companies, is consistently positive, underscoring the robustness of the results. Interestingly, the influence appears more pronounced in periods of heightened market volatility, suggesting that in uncertain conditions investors rely more heavily on derivative signals to form expectations.
4. Discussion and Conclusion
The findings of this study carry several theoretical, practical, and policy implications. From a theoretical standpoint, they validate the proposition that derivative markets, far from being mere hedging platforms, can exert direct influence on spot markets through informational spillovers and behavioral feedback loops. This perspective is consistent with international literature but acquires distinctive significance in emerging Islamic markets like Iran’s, where the institutional framework is still developing.
      From a practical perspective, the positive association between option trading volume and stock prices highlights the importance of monitoring derivative markets for investment decision-making. Investors who pay attention to option market signals may be better positioned to anticipate stock price trends. Conversely, ignoring derivative activity risks missing critical information embedded in market dynamics.
      From a regulatory and Islamic finance perspective, the results raise both opportunities and cautions. On the one hand, the derivative market can enhance price discovery and provide valuable signals that improve market efficiency. On the other hand, the shallow depth of Iran’s derivative market magnifies the risk of speculative manipulation, excessive volatility, and practices that may conflict with Islamic principles such as gharar and maysir. Policymakers must therefore strike a balance: encouraging the healthy growth of derivatives as part of capital market development while instituting strong oversight to prevent abuse.
      The study concludes that option trading activity in Iran, particularly in the automotive industry, should not be dismissed as marginal. Instead, it represents a critical element of market dynamics that influences stock price formation. Strengthening oversight, improving transparency, and aligning derivative instruments with Islamic financial principles will not only reduce the risks of manipulation but also unlock the potential benefits of derivatives in supporting more efficient and stable capital markets.
      In summary, the research provides empirical evidence that derivative activity, even in its early stages of development in Iran, significantly affects spot market outcomes. It highlights the interconnectedness of financial instruments and underscores the need for integrated policy approaches in Islamic capital markets. Future research could expand the analysis to other sectors, explore alternative derivative products, and further examine the interplay between Shariah compliance and market efficiency.

Keywords

Main Subjects

  1. اجاقی، سید احمد؛ فیض‌پور، محمد؛ انصاری سامانی، حبیب‌الله؛ و یاوری، کوروش (1404). بررسی راهبردهای معاملاتی در مبادله اختیار خرید سهام‌های ریلی و تحلیل فرصت‌های سوداگری. سیاست‌گذاری اقتصادی، 17(33)، 151–179. DOI: 22034/epj.2024.20854.2533
  2. پیمانی، محمد؛ سرگلزایی، مهدی؛ و مصفا، احسان (1403). ارزش‌گذاری اوراق اختیار معامله به روش درخت دوجمله‌ای تحت عدم قطعیت نایتی و هزینه معاملات در بورس اوراق بهادار تهران. مهندسی مالی و مدیریت اوراق بهادار، 15(59)، 168–
  3. چهره‌نژاد، صادق؛ لطفی، علی؛ و اندرز، داود (1402). بررسی امکان به‌کارگیری قراردادهای مشتقه در بازارهای مالی از منظر فقهی و حقوقی. مطالعات فقه اقتصادی، 4(4)، 146–166.
  4. راعی، رضا؛ و سعیدی، علی (1383). مبانی مهندسی مالی و مدیریت ریسک. ایران، تهران. سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه‌ها (سمت).
  5. رحیمیان، نظام‌الدین؛ خوزین، علی؛ و محمدی، جمال (1398). تأثیر بازده سهام و نوسان شاخص بورس بر روی حجم معاملات اوراق اختیار فروش تبعی. دانش مالی تحلیل اوراق بهادار (مطالعات مالی)، 12(42)، 181–
  6. کاشیان، عبدالمحمد؛ و پارسا، الهام (1400). تحلیل اختیار باینری از جنبه اقتصادی و فقهی. تحقیقات مالی اسلامی، 11(1)، 227-258. DOI: 30497/ifr.2021.241402.1651
  7. محمدی، رضا (1402). تأثیر بیمه بر کاهش ریسک سرمایه‌گذاری شرکت‌ها. مدیریت، حسابداری و اقتصاد، 4، 313–325.
  8. مستولی‌زاده، سید محمد؛ و سلیمی، لیلا (1399). رابطه شاخص پیچیدگی اقتصادی و شاخص توسعه کشورهای توسعه‌یافته و درحال‌توسعه. تحقیقات اقتصادی، 55(4)، 853-886.
  9. مهدوی کلیشمی، غدیر؛ و نیکان، لیلی (1387). اقتصاد مالی. ایران، تهران: دانشگاه خوارزمی.
  10. نصیری، کیوان؛ و عسکرزاده، غلامرضا (1402). تحلیل مقایسه‌ای کارایی مدل قیمت‌گذاری بلک- شولز و درخت دوجمله‌ای در معاملات اختیار خرید بورس اوراق بهادار تهران. مهندسی مالی و مدیریت اوراق بهادار، 14(45)، 25–42.

Reference

  1. Ahmed, A., Uddin, G. S., & Sohag, K. (2016). Biomass energy technological progress and the environmental Kuznets curve: Evidence from selected European countries. Biomass and Bioenergy, 90: 202-208.
  2. Amihud, Y., & Mendelson, H. (2008). The impact of stock options on stock prices. Journal of Finance, 63(1), 1-33.
  3. Baltagi,B.H. and Kao, C. (2001). Nonstationary panels,cointegration in panels and dynamic panels: a survey. (pp.7_51). Emerald Group Publishing Limited
  4. Black, Fischer; Scholes, Myron (1973). "The Pricing of Options and Corporate Liabilities". Journal of Political Economy81(3): 637–654.
  5. Chen, X., Feng, Y., & Guo, J. (2023). The impact of stock option trading on short-term volatility. Journal of Empirical Finance, 77, 1-22.
  6. Chaitip, P., Chokethaworn, K., Chaiboonsri, C., & Khounkhalax, M. (2015). Money supply influencing on economic growth – wide phenomena of AEC open region. Procedia Economics and Finance, 24, 108–115. https://doi.org/10.1016/S2212-5671(15)00626-7
  7. Daniel, K., & Hirshleifer, D. (2012). Market efficiency and stock returns under asymmetric information: The role of stock options. Journal of Financial Economics, 105(3), 424-449.
  8. Dong, J., Fan, Y., Huang, X., & Wu, J. (2022). The impact of index option trading on stock returns: Evidence from a global perspective. Journal of Financial Economics, 142(2), 576-616.
  9. Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46(6), 1251–1271.
  10. Hilliard, J. E., Hilliard, J., & Wu, Y. (2025). Do short‑lived options reveal information asymmetry? Evidence from open interest and volume signals. Review of Quantitative Finance and Accounting.
  11. Huang, H.-G., Tsai, W.-C., & Yang, J. J. (2024). Trading activity of VIX futures and options around FOMC announcements. International Review of Financial Analysis, 94, 103321.
  12. Jianfeng Hu, (2014), Does option trading convey stock price information?,Journal of Financial Economics, 111(3), 625-645.
  13. Kleinman, A., Das, V., & Lock, M. (1997). Social Suffering: University of California press.
  14. Levin, A., Lin, C. F., & Chu, C. S. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of Econometrics, 108(1), 1–24.
  15. Luo, Z., Tian, Y., & Wu, J. (2023). The role of stock options in price formation: Evidence from high-frequency data. Journal of Financial Markets, 51, 1-33.
  16. MacKenzie, D., & Millo, Y. (2003). Constructing a market, performing theory: The historical sociology of a financial derivatives exchange. American journal of sociology, 109(1), 107-145.
  17. Nkoro, E., & Uko, A. K. (2016). Autoregressive Distributed Lag (ARDL) cointegration technique: application and interpretation. Journal of Statistical and Econometric Methods, 5(4), 63–91.
  18. Pan, J., & Poteshman, A. M. (2006). The information in option volume for future stock prices. The Review of Financial Studies, 19(3), 871–908. https://doi.org/10.1093/rfs/hhj024
  19. Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics, 61(S1), 653–670.
  20. Pesaran, M. H., & Shin, Y. (1999). An autoregressive distributed-lag modelling approach to cointegration analysis. Econometric Society Monographs, 31:371-413.
  21. Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of econometrics, 68: (1), 79-113.
  22. Pesaran, M. H., Shin, Y., & Smith, R. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289–326.
  23. Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association, 94(446), 621–634.
  24. Ojāqī, S. A., Fayżpūr, M., Anṣārī Sāmānī, Ḥ.-Allāh, & Yāvarī, K. (1404 SH/2025). Barrasī-ye Rāhbordhā-ye Moʿāmelātī dar Mobādale-ye Ekhtīyār-e Kharīd-e Sahāmhā-ye Rīlī va Taḥlīl-e Forsathā-ye Sūdāgarī [Analysis of Trading Strategies in Exchange of Call Options on Railway Stocks and Speculative Opportunities]. Sīyāsat-gozārī-ye Eqteṣādī [Economic Policy], 17(33), 151– https://doi.org/10.22034/epj.2024.20854.2533 [in Persian].
  25. Peymānī, M., Sargolzāʾī, M., & Moṣaffā, E. (1403 SH/2024). Arzeš-gozārī-ye Orāq-e Ekhtīyār-e Moʿāmele be Reš-e Derakht-e Dojomleʿī Taḥt-e ʿAdam-e Oqdat-e Nāyatī va Hazineh-ye Moʿāmelāt dar Būrs-e Orāq-e Bahādār-e Tehrān [Valuation of Options Using Binomial Tree under Knightian Uncertainty and Transaction Costs in Tehran Stock Exchange]. Mohandesī-ye Mālī va Modīriyyat-e Orāq-e Bahādār [Financial Engineering & Securities Management], 15(59), 168–188. [in Persian].
  26. Čehreh-Nežād, Ṣ., Loṭfī, ʿ, & Andarz, D. (1402 SH/2023). Barrasī-ye Emkān-e Be-Kār-gīrī-ye Qardādhā-ye Moštaqe dar Bāzārhā-ye Mālī az Manẓar-e Feqhī va Ḥoqūqī [Feasibility of Using Derivative Contracts in Financial Markets from Jurisprudential and Legal Perspectives]. Moṭāleʿāt-e Feqh-e Eqteṣādī [Jurisprudential Economic Studies], 4(4), 146–166. [in Persian].
  27. Rāʿī, R., & Saʿīdī, ʿ (1383 SH/2004). Mabānī-ye Mohandesī-ye Mālī va Modīriyyat-e Risḳ [Foundations of Financial Engineering and Risk Management]. Iran, Tehran: Sāzmān-e Moṭāleʿeh va Tadvīn-e Kotob-e ʿOlūm-e Ensānī Dānešgāhhā (SAMT). [in Persian].
  28. Raḥīmīān, Neẓām-al-Dīn, Ḵūzīn, ʿ, & Moḥammadī, J. (1398 SH/2019). Taʾsīr-e Bāzdah-e Sahām va Novsān-e Šāḵeṣ-e Būrs bar Ḥojm-e Moʿāmelāt-e Orāq-e Ekhtīyār-e Forūš-e Tabaʿī [Impact of Stock Returns and Index Volatility on Trading Volume of Put Warrants]. Dāneš-e Mālī Taḥlīl-e Orāq-e Bahādār (Moṭāleʿāt-e Mālī) [Financial Knowledge & Securities Analysis (Financial Studies)], 12(42), 181–193. [in Persian].
  29. Kāšānī, ʿ-al-M., & Pārsā, E. (1400 SH/2021). Taḥlīl-e Ekhtīyār-e Bāynarī az Janbeh-ye Eqteṣādī va Feqhī [Binary Option Analysis from Economic and Jurisprudential Perspectives]. Taḥqīqāt-e Mālī-ye Eslāmī [Islamic Financial Research], 11(1), 227–258. https://doi.org/10.30497/ifr.2021.241402.1651 [in Persian].
  30. Moḥammadī, R. (1402 SH/2023). Taʾsīr-e Bīmeh bar Kaheš-e Risḳ-e Sarmāye-gozārī-ye Šerkathā [Impact of Insurance on Reducing Firms’ Investment Risk]. Modīriyyat, Ḥesābdārī va Eqteṣād [Management, Accounting and Economics], 4, 313– [in Persian].
  31. Mostowlī-zādeh, S. M., & Salīmī, L. (1399 SH/2020). Rabṭ-e Šāḵeṣ-e Pīčīdegi-ye Eqteṣādī va Šāḵeṣ-e Towseʿe-ye Kešvarhā-ye Towseʿa-yāfteh va Dar-ḥāl-e Towseʿe [Relationship Between Economic Complexity Index and Development Index of Developed and Developing Countries]. Taḥqīqāt-e Eqteṣādī [Economic Research], 55(4), 853–886. [in Persian].
  32. Mahdavī Kališmī, Ḡ., & Nīkān, L. (1387 SH/2008). Eqteṣād-e Mālī [Financial Economics]. Iran, Tehran: Dānešgāh-e Ḵwārazmī. [in Persian].
  33. Naṣīrī, K., & ʿAskarezādeh, Ḡ. (1402 SH/2023). Taḥlīl-e Moqāyeseʾī-ye Kāreʾī-ye Model-e Qeymat-gozārī-ye Black–Scholes va Derakht-e Dojomleʿī dar Moʿāmelāt-e Ekhtīyār-e Kharīd-e Būrs-e Orāq-e Bahādār-e Tehrān [Comparative Analysis of the Efficiency of Black–Scholes and Binomial Tree Pricing Models in Call Option Trading on Tehran Stock Exchange]. Mohandesī-ye Mālī va Modīriyyat-e Orāq-e Bahādār [Financial Engineering & Securities Management], 14(45), 25–42. [in Persian].
  34. https://www.investopedia.com
Volume 14, Issue 2 - Serial Number 32
November 2024
Pages 431-462
  • Receive Date: 12 August 2024
  • Revise Date: 10 April 2025
  • Accept Date: 11 May 2025