Examining the Network Causal Relationship Between Financial Markets During Sanctions

Document Type : Science - Research (Islamic Financial System in Resistance Economy)

Authors

1 PhD in Islamic Economics - Finance, Faculty of Islamic Studies and Economics, Imam Sadiq University, Tehran, Iran

2 Associate Professor, Department of Monetary and Financial Economics, Faculty of Islamic Studies and Economics, Imam Sadeq University, Tehran, Iran.

Abstract

1. Introduction and Objective
Sanctions have long been one of the most critical external shocks shaping the dynamics of Iran’s economy. Since the Islamic Revolution in 1979, Iran has been repeatedly subjected to unilateral and multilateral sanctions, particularly by the United States and its allies, which have targeted key financial and energy sectors. These sanctions disrupt financial transactions, limit international trade, and impose barriers on capital flows, thereby altering the structure and behavior of domestic markets.
     In a non-sanctioned environment, investors typically diversify by entering competing or parallel foreign markets, effectively managing investment risk across multiple asset classes. Sanctions, however, restrict such options, forcing investors to rely more heavily on domestic markets and alternative assets such as cryptocurrencies. These shifts in investment strategies highlight the importance of understanding how sanctions affect network causal relationships among domestic financial markets.
     Clause 22 of Iran’s Resistance Economy policy emphasizes mobilizing national resources and improving resilience against external pressures. Understanding inter-market spillovers under sanction conditions is thus vital, not only for academic knowledge but also for policymaking, portfolio management, and systemic risk assessment. The present study aims to analyze the spillover dynamics and causal interdependencies among three key markets of Iran—Tehran Stock Exchange, the foreign exchange market, and the cryptocurrency market—over the period 1390–1401 SH (2011–2022 AD).
     The primary objectives of the study are:

To quantify spillover effects between financial markets during sanction periods.
To identify structural breaks in market interconnections caused by specific sanction episodes.
To evaluate the systemic role of each market as a transmitter or receiver of shocks.
To provide evidence-based recommendations for policymaking in line with the Resistance Economy strategy.

2. Methods and Materials
To capture the time-varying interdependencies between markets, the study employs the Time-Varying Parameter Vector Autoregression (TVP-VAR) model. This model, introduced by Primiceri (2005) and further extended by Koop & Korobilis (2014), allows parameters to evolve over time, making it suitable for capturing the dynamic and nonlinear nature of financial linkages, especially during turbulent periods such as sanctions.

Data and Period: The dataset covers the period from 16/11/1390 (February 2012) to 20/10/1401 (January 2023), using daily observations.
Markets Analyzed:
Tehran Stock Exchange Index (TPI) – as a representative of equity performance.
Foreign Exchange Market – USD/IRR daily free-market exchange rate.
Cryptocurrency Market – Bitcoin returns as the leading cryptocurrency.
Variables: Logarithmic daily returns of each market were calculated to ensure stationarity and comparability.
Sources: Exchange rates were collected from the Central Bank of Iran, stock data from BourseView, and Bitcoin prices from com.
Analytical Approach:
A baseline VAR model was constructed to identify inter-market interactions.
TVP-VAR was employed to account for parameter changes across time.
Generalized Forecast Error Variance Decomposition (GFEVD) was used to measure spillover intensities, following the approach of Diebold & Yilmaz (2012).
Sensitivity analysis was conducted in two ways: (a) event-by-event (individual sanctions such as the Central Bank sanction, sanctions on energy and financial sectors, and sanction on 18 Iranian banks), and (b) comprehensive (aggregating sanctions into five distinct phases).

The TVP-VAR model enables computation of:

Total Connectedness Index (TCI): The average level of network spillovers across markets, representing systemic risk.
Net Spillover Index (NET): Identifies whether a market acts as a net transmitter (positive NET) or receiver (negative NET) of shocks.

3. Research Findings
The results from sensitivity analysis revealed key insights into how sanctions reshaped inter-market relationships:
- Event-specific analysis:

Central Bank Sanction (2019): TCI rose from 3.22% to 5.54%, reflecting a 67% increase in inter-market connectedness. The stock market remained a net receiver, foreign exchange a strong transmitter, and cryptocurrency shifted toward greater vulnerability.
Financial and Energy Sector Sanctions (2018): TCI increased from 3.26% to 5.17%. Cryptocurrencies’ role weakened dramatically, showing nearly zero spillover transmission, while the stock market’s negative NET deepened.
18 Bank Sanctions (2020): The most disruptive sanction. TCI rose from 3.24% to 5.15%. Here, the cryptocurrency market switched roles from transmitter to receiver, highlighting its fragility under systemic banking restrictions.

 
- Comprehensive phase analysis: Dividing the entire period into five phases provided clearer patterns:

Phase 1 (Pre-JCPOA withdrawal): Cryptocurrency (NET=+0.67) acted as a transmitter; stock market (NET=−0.78) and forex (NET=+0.11) showed mixed roles.
Phase 2 (Post-JCPOA withdrawal to financial/energy sanctions): Forex became the dominant transmitter (NET=+3.10), while both crypto (NET=−1.54) and stocks (NET=−1.56) were receivers.
Phase 3 (Financial/Energy sanctions to Central Bank sanction): Forex remained a transmitter (NET=+1.94), while crypto (−0.32) and stocks (−1.61) remained receivers.
Phase 4 (Central Bank sanction to 18 Bank sanction): Cryptocurrency briefly resumed a transmitter role (+0.37), forex (+0.19) remained transmitter, while stocks (−0.57) stayed vulnerable.
Phase 5 (18 Bank sanction to end of study): A significant structural shift: forex (+2.41) and stocks (+2.37) both emerged as transmitters, while crypto turned into a strong receiver (−0.04).

- Total Connectedness Index (TCI): Across all phases, TCI fluctuated between 3.16% and 6.63%, peaking during the fifth phase, signaling heightened systemic risk and tighter network integration under sanctions.
Discussion
The findings confirm that sanctions are not only external shocks but also structural breakpoints for domestic financial markets. Several critical insights emerge:

Dominant Role of Forex: The foreign exchange market consistently acted as the primary transmitter of shocks, underlining its systemic importance. This reflects Iran’s heavy reliance on foreign currency markets as both a channel for external shocks and a driver of domestic volatility.
Stock Market Vulnerability: The Tehran Stock Exchange was persistently a net receiver of shocks. Its sensitivity to currency volatility and sanctions implies weak hedging capacity and limited resilience.
Cryptocurrency’s Dual Role: Unlike forex or stocks, the cryptocurrency market displayed a shifting role, alternating between transmitter and receiver. This duality suggests that crypto markets, while offering temporary alternatives for sanction evasion, are highly unstable and reactive to systemic stress.
Structural Shifts Post-2020: The sanctions on 18 Iranian banks marked a turning point, intensifying inter-market connectedness and reshaping roles. This indicates the fragility of financial intermediation in Iran and the high exposure of cryptocurrencies to institutional restrictions.
Policy Alignment with Resistance Economy: The results support Clause 22 of the Resistance Economy policy, highlighting the need for coordinated resource mobilization and risk management strategies in times of external pressure.

5. Conclusion
The study concludes that sanctions significantly alter the causal network structure of Iran’s financial markets, raising systemic risks and reshaping market roles:

The foreign exchange market remains the central transmitter of shocks.
The stock market is predominantly vulnerable as a shock receiver.
The cryptocurrency market exhibits instability, alternating roles depending on sanction type and timing.

     These results highlight the necessity for targeted economic policies to stabilize forex markets, protect equities, and regulate cryptocurrency flows. Without such measures, sanctions will continue to amplify systemic risks and undermine investor confidence.
6. Implications and Future Research
1. Policy Implications: Policymakers should prioritize stabilizing the forex market through effective currency management, while designing mechanisms to shield the stock market from external shocks. Additionally, regulated domestic alternatives to cryptocurrencies could prevent spillovers from volatile digital assets. Establishing monitoring institutions for currency and crypto markets will enhance transparency and reduce systemic risks.
2. Investor Implications: Investors should recognize the persistent systemic role of forex and the fragility of equities under sanctions. Portfolio diversification strategies must account for cryptocurrencies’ unstable dual role.
3. Future Research: Comparative studies across other sanctioned economies (e.g., Russia, Venezuela) could provide cross-country evidence on sanction-induced spillovers. Expanding the network to include commodities such as gold and oil would further enrich systemic risk analysis. Methodologically, combining TVP-VAR with wavelet coherence or machine-learning approaches may yield deeper insights into dynamic contagion patterns.

Keywords

Main Subjects

  1. اسماعیلی، پریسا (1400). تجزیه و تحلیل عوامل مؤثر بر نوسانات مصرف برق براساس شرایط اقتصادی استفاده از مدل­های SVAR و TVP-VAR (پایان نامه کارشناسی ارشد)، دانشگاه خوارزمی، تهران، ایران.
  2. ایرانمنش، سعید؛ صالحی آسفیجی، نورالله؛ و جلائی اسفندآبادی، سید عبدالمجید (1400). بررسی اثر تحریم­های خارجی بر ترازپرداخت­های خارجی جمهوری اسلامی ایران رویکرد سیستم­های پویا. نظریه­های کاربردی اقتصادی، 8(2)، 75-106.
  3. بیانات مقام معظم رهبری امام خامنه­ای در دیدار در جمعی از دانشجویان، 02/06/1391.
  4. پهلوانی، مصیب؛ حیدریان، سمیرا؛ و میرجلیلی، سید حسین (1400). بررسی تأثیر تحریم‌های مالی بر نابرابری درآمد در ایران. سیاستگذاری اقتصادی، 13(25)، 239-213.
  5. صادقی، حسین؛ و محمدی خبازان، محمد (1394). اثرات تحریم بر اقتصاد ایران (رساله دکتری). دانشگاه تربیت مدرس، تهران، ایران.
  6. ضیائی بیگدلی، محمدتقی؛ غلامی، الهام؛ و طهمابی بلداچی، فرهاد (1392). بررسی اثر تحریم­های اقتصادی بر تجارت ایران، کاربردی از مدل جاذبه. پژوهشنامه اقتصادی، 13(48)، 109-119.
  7. عزتی، مرتضی؛ و سلمانی، یونس (1394). برآورد اثر تحریم­های اقتصادی بر رشد اقتصادی ایران. مطالعات راهبردی بسیج، 18(67)، 69-101. DOR: 1001.1.1735501.1394.18.66.4.4
  8. قاسمی­نژاد، سهیل؛ و جهان‌پرور، محمدرضا (1399). اثر مالی تحریم­ها: مورد ایران. مدلسازی سیاسی، 43(3)، 601-621.
  9. کرمی، سپیده؛ و رستگار، محمدعلی (1397). تخمین اثر سرریز بازده و نوسانات صنایع مختلف بر روی یکدیگر در بازار بورس تهران. مهندسی مالی و مدیریت اوراق بهادار تهران، 9(35)، 323-342.
  10. کیومرثی، مسعود؛ احمدی شادمهری، محمد طاهر؛ سلیمی‌فر، مصطفی؛ و ابریشمی، حمید (1398). بررسی اثر تحریم­های مالی و انرژی بر شکاف تولید در اقتصاد ایران. پژوهش­های اقتصادی ایران، 24(79)، 33-66.
  11. گرشاسبی، علیرضا؛ و یوسفی دینارلو، مجتبی (1395). بررسی اثرات تحریم بین‌المللی بر متغیرهای کلان اقتصادی ایران. تحقیقات مدلسازی اقتصادی، 7(25)، 129-182.
  12. محمدی‌نژاد پاشاکی، محمدباقر؛ و اقبال‌نیا، محمد (1402). بررسی و تحلیل اثر تحریم­های اقتصادی در سرریز نوسان به بازارهای سهام، ارز و سکه طلا. پژوهش‌های راهبردی بودجه و مالیه، 4(2)، 149-173.
  13. مرزبان، حسین؛ و نجاتی، مهدی (1388). شکست ساختاری در ماندگاری تورم و منحنی فیلیپس در ایران. مدلسازی اقتصادی. 2(8)، 1-26.
  14. مهاجری، پریسا؛ و طالبلو، رضا (1401). بررسی پویایی­های سرریز تلاطمات بین بازده بخش­ها با رویکرد اتصالات خودرگرسیون برداری با پرامترهای متغیر در طول زمانTVP-VAR شواهدی از بازار سهام ایران. تحقیقات اقتصادی، 57(2)، 321-356. DOI: 22059/jte.2023.349895.1008727
  15. نادمی، یونس؛ جلیلی کامجو، سید پرویز؛ و خوچیانی، رامین (1396)، مدلسازی اقتصاد سنجی تأثیر تحریم­ها بر بازار ارز و مکانیسم انتقال آن به متغیرهای اقتصاد کلان ایران. مدلسازی اقتصادسنجی، 2(2)، 87-61.
  16. هاشمی، سید امیرمهدی؛ خدائی وله‌زاقرد، محمد؛ معمارنژاد، عباس؛ و ابوالحسنی هستیانی، اصغر (1399). رابطه سرریز شبکه­ای بازدهی بازارهای سرمایه­گذاری با رویکرد دیبولد و یلماز. مهندسی مالی و مدیریت اوراق بهادار، 11(44)، 446-478.
  17. یاوری، کاظم؛ و محسنی، رضا (1388). آثار تحریم­های تجاری و مالی بر اقتصاد ایران: تجزیه و تحلیل تاریخی. مجلس و راهبرد، 16(61)، 9-54.

Reference

  1. Aktham, I., Maghyereh, B. A., & Tziogkidis, P. (2017). Volatility spillovers and cross-hedging between gold, oil, and equities: Evidence from the Gulf Cooperation Council countries. Energy Economics, 68, 440–453. https://doi.org/10.1016/j.eneco.2017.10.017
  2. Alam Rizvi, M. M. (2012). Tougher US sanctions against Iran: Global reactions and implications. New Delhi: Institute for Defense Studies and Analyses.
  3. Ankudinov, A., Ibragimov, R., & Lebedev, O. (2017). Sanctions and the Russian stock market. Research in International Business and Finance, 40, 150–162. https://doi.org/10.1016/j.ribaf.2017.01.005
  4. Arouri, M. E. H., Lahiani, A., & Nguyen, D. K. (2011). Return and volatility transmission between world oil prices and stock markets of the GCC countries. Economic Modelling, 28(4), 1815–1825. https://doi.org/10.1016/j.econmod.2011.03.012.
  5. Bouri, E., Das, M., Gupta, R., & Roubaud, D. (2018). Spillovers between Bitcoin and other assets during bear and bull markets. Applied Economics, 50(55), 5935–5949. https://doi.org/10.1080/00036846.2018.1489129
  6. Conlon, T., Corbet, S., & McGee, R. J. (2020). Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. Research in International Business and Finance, 54, 101248. https://doi.org/10.1016/j.ribaf.2020.101248
  7. Corbet, S., Hou, Y., Hu, Y., Larkin, C., & Oxley, L. (2020). Any port in a storm: Cryptocurrency safe-havens during the COVID-19 pandemic. Economics Letters, 194, 109377. https://doi.org/10.1016/j.econlet.2020.109377
  8. Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006
  9. Dreger, C., Kholodilin, K. A., Ulbricht, D., & Fidrmuc, J. (2016). Between the hammer and the anvil: The impact of economic sanctions and oil prices on Russia’s ruble. Journal of Comparative Economics, 44(2), 295–308. https://doi.org/10.1016/j.jce.2015.12.010
  10. Dwita Mariana, C., Ekaputra, I. A., & Husodo, Z. A. (2021). Are Bitcoin and Ethereum safe-havens for stocks during the COVID-19 pandemic? Finance Research Letters, 38, 101798. https://doi.org/10.1016/j.frl.2020.101798
  11. Esmaili, P. (1400 SH/2021). Tajziye va talīl-e ʿavāmel-e moʾasser bar novasānāt-e masraf-e barq bar asās-e sharāye-e eqteādī bā estefāde az model-hā-ye SVAR va TVP-VAR [Analysis of factors affecting electricity consumption fluctuations based on economic conditions using SVAR and TVP-VAR models]. (Phd). Kharazmi University, Tehran, Iran [in Persian].
  12. Farzanegan, M. R., & Hayo, B. (2019). Sanctions and the shadow economy: Empirical evidence from Iranian provinces. Applied Economics Letters, 26(6), 501–505. https://doi.org/10.1080/13504851.2018.1470315
  13. Fang, S., & Egan, P. (2018). Measuring contagion effects between crude oil and Chinese stock market sectors. The Quarterly Review of Economics and Finance, 68, 74–84. https://doi.org/10.1016/j.qref.2017.11.001
  14. Feng, H., Liu, Y., Wu, J., & Guo, K. (2023). Financial market spillovers and macroeconomic shocks: Evidence from China. Research in International Business and Finance, 65, 101961. https://doi.org/10.1016/j.ribaf.2023.101961
  15. Garshāsbī, ʿ, & Yūsefī Dīnarlū, M. (1395 SH/2016). Barrasī-ye asarāt-e taḥrim bīnal-melalī bar motaghayyerehā-ye kolān-e eqteṣādī-ye Īrān [The impact of international sanctions on Iran’s macroeconomic variables]. Taqīqāt-e Modellsāzī-ye Eqteādī [Economic Modeling Research], 7(25), 129–182. [in Persian].
  16. Goodell, J. W., & Goutte, S. (2021). Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis. Finance Research Letters, 38, 101625. https://doi.org/10.1016/j.frl.2020.101625
  17. Hāshemī, S. A. M., Khodāʾī Velehzāqard, M., Meʿmārnejād, ʿ, & Abūl-Ḥasanī Hestīānī, ʿA. (1399 SH/2020). Rabeteh-ye sarīz-e shabakeʾī-ye bāzdeh-e bāzār-hā-ye sarmāyegozārī bā rūyekard-e Dībold va Yelmaz [Network spillover effects of returns in investment markets using Diebold & Yilmaz approach]. Mohandessī-ye Mālī va Modīriyyat-e Orāq-e Bahādar [Financial Engineering and Securities Management], 11(44), 446–478. [in Persian].
  18. Hakim, S. R., & Rashidian, M. (2009). Properties, linkage, and the impact of sanctions on Tehran Stock Exchange. Middle East Development Journal, 1(2), 145–161. https://doi.org/10.1142/S1793812009000097
  19. Huang, Y., Duan, K., & Mishra, T. (2021). Is Bitcoin really more than a diversifier? A pre- and post-COVID-19 analysis. Finance Research Letters, 43, 102016. https://doi.org/10.1016/j.frl.2021.102016
  20. Iqbal, N., Fareed, Z., Wan, G., & Shahzad, F. (2021). Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market. International Review of Financial Analysis, 73, 101613. https://doi.org/10.1016/j.irfa.2020.101613
  21. Iranmanesh, S., Ṣāleḥī Asfījī, N., & Jalāʾī Esfandābādī, S. ʿ (1400 SH/2021). Barrasī-ye asar-e taḥrim-hā-ye khārejī bar tarāz-e pardākht-hā-ye khārejī-ye Jomhūrī-ye Eslāmī-ye Īrān: Rūyekard-e sīstem-hā-ye pūyā [The impact of external sanctions on Iran’s balance of payments: A dynamic systems approach]. Naarīyeh-hā-ye Kārburdī-ye Eqteādī [Applied Economic Theory], 8(2), 75–106. [in Persian].
  22. Izzatī, M., & Salmānī, Y. (1394 SH/2015). Barāvard-e asar-e taḥrim-hā-ye eqteṣādī bar roshd-e eqteṣādī-ye Īrān [Estimating the impact of economic sanctions on Iran’s economic growth]. Moālaʿāt-e Rāhbordī-ye Basīj [Basij Strategic Studies], 18(67), 69– DOR: 20.1001.1.1735501.1394.18.66.4.4 [in Persian].
  23. Karāmī, S., & Rastgār, M. ʿ (1397 SH/2018). Takmīn-e asar-e sarīz-e bāzdeh va navasānāt-e ṣanāyeʿ bar yekdīgar dar bāzār-e bourse-Tehrān [Estimating return and volatility spillover effects among industries in Tehran Stock Exchange]. Mohandessī-ye Mālī va Modīriyyat-e Orāq-e Bahādar-e Tehrān [Financial Engineering and Securities Management of Tehran], 9(35), 323–342. [in Persian].
  24. Klomp, J. (2020). The impact of Russian sanctions on the return of agricultural commodity futures in the EU. Research in International Business and Finance, 51, 101073. https://doi.org/10.1016/j.ribaf.2019.101073
  25. Koop, G., & Korobilis, D. (2014). A new index of financial conditions. European Economic Review, 71, 101–116. https://doi.org/10.1016/j.euroecorev.2014.07.002
  26. Kravaceck, T. (2020). The Impact of International Sanctions on The Economy of Iran, Bachelor Thesis (Bc). Charles University, Faculty of social Sciences Institut of Economic Studies.
  27. Khameneʾī, ʿ (1391 SH/2012, August 6). Beyānāt-e Maqām-e Moʿaẓẓam-e Rahbarī dar didār bā jamʿī az dāneshjūyān [Speech of the Supreme Leader in a meeting with students]. [in Persian].
  28. Kīūmarṯhī, M., Aḥmadī Shādmehrī, M. Ṭ., Salīmī-Far, M., & Abrīshamī, Ḥ. (1398 SH/2019). Barrasī-ye asar-e taḥrim-hā-ye mālī va enerjī bar shekāf-e tolīd dar eqteṣād-e Īrān [The effect of financial and energy sanctions on output gap in Iran’s economy]. Pajoohesh-hā-ye Eqteādī-ye Īrān [Iranian Economic Research], 24(79), 33–66. [in Persian].
  29. Guesmi, K., Saadi, S., Abid, I., & Ftiti, Z. (2019). Portfolio diversification with virtual currency: Evidence from Bitcoin. International Review of Financial Analysis, 63, 431–437. https://doi.org/10.1016/j.irfa.2018.03.004
  30. Laudati, D., & Pesaran, M. H. (2021). Identifying the effects of sanctions on the Iranian economy using newspaper coverage. CESifo Working Paper Series, No. 9217. https://doi.org/10.2139/ssrn.3912971
  31. Trabelsi, N. (2018). Are there any volatility spill-over effects among cryptocurrencies and widely traded asset classes? Journal of Risk and Financial Management, 11(4), 1–17. https://doi.org/10.3390/jrfm11040084
  32. Marzabān, Ḥ., & Nejātī, M. (1388 SH/2009). Shekast-e sākhtārī dar māndegārī-ye torom va manḥanī-ye Phillips dar Īrān [Structural break in inflation persistence and the Phillips curve in Iran]. Modellsāzī-ye Eqteādī [Economic Modeling], 2(8), 1–26. [in Persian].
  33. Mahājirī, P., & Ṭāleblū, R. (1401 SH/2022). Barrasī-ye pūyāʾī-ye sarīz-e talāṭomāt beyn-e bāzdeh-e bakhsh-hā bā rūyekard-e etesālāt-e VAR bā parametre-hā-ye motaghayyir dar tool-e zamān (TVP-VAR): Shavāhedī az bāzār-e saham-e Īrān [Dynamics of spillovers across sectoral returns using TVP-VAR: Evidence from Iran’s stock market]. Taqīqāt-e Eqteādī [Economic Research], 57(2), 321–356. https://doi.org/10.22059/jte.2023.349895.1008727 [in Persian].
  34. Moḥammadī-Nejād Pāshākī, M. B., & Eqbāl-Nīyā, M. (1402 SH/2023). Barrasī va taḥlīl-e asar-e taḥrim-hā-ye eqteṣādī dar sarīz-e navasān be bāzār-hā-ye saham, arz va sekeh-ye ṭalā [Analyzing the impact of economic sanctions on volatility spillovers to stock, currency and gold markets]. Pajoohesh-hā-ye Rāhbordī-ye Būdjeh va Mālīyeh [Strategic Research on Budgeting and Finance], 4(2), 149–173. [in Persian].
  35. Nādamī, Y., Jalīlī Kāmjū, S. P., & Khūchīānī, R. (1396 SH/2017). Modellsāzī-ye eqteṣād-senjī-ye taʾthīr-e taḥrim-hā bar bāzār-e arz va mekanīsm-e enteqāl-e ān be motaghayyerehā-ye eqteṣād-e kolān-e Īrān [Econometric modeling of the impact of sanctions on the foreign exchange market and its transmission mechanism to Iran’s macroeconomic variables]. Modellsāzī-ye Eqteād-Senjī [Econometric Modeling], 2(2), 61–87. [in Persian].
  36. Nakhil, R., Rafat, M., Bakhshi Dastjerdi, R., & Rafei, M. (2021). Oil sanctions and their transmission channels in Iran: A DSGE model. Resources Policy, 70, 101963. https://doi.org/10.1016/j.resourpol.2020.101963
  37. Primiceri, G. E. (2005). Time-varying structural vector autoregressions and monetary policy. The Review of Economic Studies, 72(3), 821–852. https://doi.org/10.1111/j.1467-937X.2005.00353.x
  38. Ṣādeqī, Ḥ., & Moḥammadī Khabāzān, M. (1394 SH/2015). Asarāt-e tarim bar eqteād-e Īrān [The effects of sanctions on Iran’s economy]. (Doctoral dissertation). Tarbiat Modares University, Tehran, Iran [in Persian].
  39. Pahlavānī, M., Heydarīān, S., & Mīrjalīlī, S. Ḥ. (1400 SH/2021). Barrasī-ye taʾthīr-e taḥrim-hā-ye mālī bar nābarābarī-ye darāmad dar Īrān [The impact of financial sanctions on income inequality in Iran]. Sīyāsatgozārī-ye Eqteādī [Economic Policy], 13(25), 213–239. [in Persian].
  40. Qāsemī-Nejād, S., & Jahan-Parvar, M. R. (1399 SH/2020). Asar-e mālī-ye taḥrim-hā: Mored-e Īrān [The financial effect of sanctions: The case of Iran]. Modellsāzī-ye Sīāsī [Political Modeling], 43(3), 601–621. [in Persian].
  41. Yāvarī, K., & Moḥsenī, R. (1388 SH/2009). Āsār-e taḥrim-hā-ye tejārī va mālī bar eqteṣād-e Īrān: Tajziye va taḥlīl-e tārīkhī [The effects of trade and financial sanctions on Iran’s economy: A historical analysis]. Majles va Rāhbord [Parliament and Strategy], 16(61), 9–54. [in Persian].
  42. Yelena, T., & Faryal, Q. (2016). Global oil glut and sanctions: The impact on Putin’s Russia. Energy Policy, 90, 140–151. https://doi.org/10.1016/j.enpol.2015.12.017
  43. Xu, Y., Taylor, N., & Lu, W. (2018). Illiquidity and volatility spillover effects in equity markets during and after the global financial crisis: An MEM approach. International Review of Financial Analysis, 56, 208–220. https://doi.org/10.1016/j.irfa.2017.12.010
  44. Yousaf, I., & Yarovaya, L. (2022). Spillovers between the Islamic gold-backed cryptocurrencies and equity markets during the COVID-19: A sectoral analysis. Pacific-Basin Finance Journal, 71, 101705. https://doi.org/10.1016/j.pacfin.2021.101705
  45. Ẓīyāʾī Beygdeli, M. T., Gholāmī, E., & Ṭahmābī Baldāchī, F. (1392 SH/2013). Barrasī-ye asar-e taḥrim-hā-ye eqteṣādī bar tejārat-e Īrān: Kārbordī az model-e jāzebe [The impact of economic sanctions on Iran’s trade: An application of the gravity model]. Pajooheshnāmeh-ye Eqteādī [Economic Research], 13(48), 109–119. [in Persian].
  • Receive Date: 31 December 2024
  • Revise Date: 11 April 2025
  • Accept Date: 28 May 2025